你的位置:首頁 > 測試測量 > 正文

改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度

發(fā)布時間:2020-03-20 來源:Marcus O''''''''''''''''Sullivan 責任編輯:wenwei

【導讀】電流檢測電阻有多種形狀和尺寸可供選擇,用于測量諸多汽車、功率控制和工業(yè)系統(tǒng)中的電流。使用極低值電阻(幾mΩ或以下)時,焊料的電阻將在檢測元件電阻中占據(jù)很大比例,結(jié)果大幅增加測量誤差。高精度應用通常使用4引腳電阻和開爾文檢測技術(shù)以減少這種誤差,但是這些專用電阻卻可能十分昂貴。另外,在測量大電流時,電阻焊盤的尺寸和設計在確定檢測精度方面起著關鍵作用。本文將描述一種替代方案,該方案采用一種標準的低成本雙焊盤檢測電阻(4焊盤布局)以實現(xiàn)高精度開爾文檢測。圖1所示為用于確定五種不同布局所致誤差的測試板。
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
圖1. 檢測電阻布局測試PCB板。
 
電流檢測電阻
 
采用2512封裝的常用電流檢測電阻的電阻值最低可達0.5 mΩ,其最大功耗可能達3 W。為了展現(xiàn)最差條件下的誤差,這些試驗采用一個0.5 mΩ、3 W電阻,其容差為1%(型號:ULRG3-2512-0M50-FLFSLT制造商:Welwyn/TTelectronics)其尺寸和標準4線封裝如圖2所示。
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
圖2. (a) ULRG3-2512-0M50-FLFSLT電阻的外形尺寸;(b) 標準4焊盤封裝。
 
傳統(tǒng)封裝
 
對于開爾文檢測,必須將標準雙線封裝焊盤進行拆分,以便為系統(tǒng)電流和檢測電流提供獨立的路徑。圖3顯示了此類布局的一個例子。系統(tǒng)電流用紅色箭頭表示的路徑。如果使用一種簡單的雙焊盤布局,則總電阻為:
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
 
為了避免增加電阻,需要把電壓檢測走線正確的布局到檢測電阻焊盤處。系統(tǒng)電流將在上部焊點導致顯著的壓降,但檢測電流則會在下部焊點導致可以忽略不計的壓降??梢?,這種焊盤分離方案可以消除測量中的焊點電阻,從而提高系統(tǒng)的總體精度。
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
圖3. 開爾文檢測。
 
優(yōu)化開爾文封裝
 
圖3所示布局是對標準雙焊盤方案的一種顯著的改進,但是,在使用極低值電阻(0.5 mΩ或以下)時,焊盤上檢測點的物理位置以及流經(jīng)電阻的電流對稱性的影響將變得更加顯著。例如,ULRG3-2512-0M50-FLFSL是一款固態(tài)金屬合金電阻,因此,電阻沿著焊盤每延伸一毫米,結(jié)果都會影響有效電阻。使用校準電流,通過比較五種定制封裝下的壓降,可以確定最佳檢測布局。
 
測試PCB板
 
圖4展示在測試PCB板上構(gòu)建的五種布局模式,分別標記為A到E。我們盡可能把走線布局到沿著檢測焊盤延伸的不同位置的測試點,表示為圖中的彩點。各個電阻封裝為:
 
1. 基于2512建議封裝的標準4線電阻(見圖2(b))。檢測點對(X 和 Y)位于焊盤外緣和內(nèi)緣(x軸)。
 
2. 類似于A,但焊盤向內(nèi)延伸較長,以便更好地覆蓋焊盤區(qū)(見圖2(a))。檢測點位于焊盤中心和末端。
 
3. 利用焊盤兩側(cè)以提供更對稱的系統(tǒng)電流通路。同時把檢測點移動到更中心的位置。檢測點位于焊盤中心和末端。
 
4. 與C類似,只是系統(tǒng)電流焊盤在最靠里的點接合。只使用了外部檢測點。
 
5. A和B的混合體。系統(tǒng)電流流過較寬的焊盤,檢測電流流過較小的焊盤。檢測點位于焊盤的外緣和內(nèi)緣。
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
圖4. 測試PCB板的布局
 
在模板上涂抹焊料,并在回流爐中使用回流焊接。使用的是ULRG3-2512-0M50-FLFSLT電阻。
 
測試步驟
 
測試設計如圖5所示。使20 A的校準電流通過各個電阻,同時使電阻保持在25°C。在加載電流后1秒內(nèi),測量產(chǎn)生的差分電壓,以防止電阻溫度升高1°C以上。同時監(jiān)控各個電阻的溫度,以確保測試結(jié)果均在25°C下測得。電流為20 A時,通過0.5 mΩ電阻的理想壓降為10 mV。
 
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
圖5. 測試設置
 
測試結(jié)果
 
表1列出了采用圖4所示檢測焊盤位置測得的數(shù)據(jù)。
 
表1. 測得電壓和誤差
改進低值分流電阻的焊盤布局,優(yōu)化高電流檢測精度
 
*無開爾文檢測。對通過高電流主焊盤的電壓進行測量,以展示與焊料電阻相關的誤差。
 
觀察結(jié)果
 
1. 由于結(jié)果的可比較性以及各電阻偏差都在容限范圍之內(nèi),所以得出封裝C和D的誤差最少,。封裝C為首選封裝,因為它不大可能導致與元件放置容限相關的問題。
 
2. 在每一種情況下,電阻外端的檢測點提供的結(jié)果最準確。這表明,這些電阻是制造商根據(jù)電阻的總長度設計的。
 
3. 請注意,在未使用開爾文檢測時,焊料電阻相關誤差是22%。這相當于約0.144 mΩ的焊料電阻。
 
4. 封裝E展示了不對稱焊盤布局的效應?;亓髌陂g,元件通過大量焊料才能焊盤。應避免這種封裝。
 
結(jié)論
 
根據(jù)前面所示結(jié)果,最佳封裝是C,其預期測量誤差小于1%。該封裝的建議尺寸如圖6所示。
 
http://www.yhcgroup.com/art/artinfo/id/80037890
圖6. 最佳封裝尺寸
 
檢測走線的布局也會影響測量精度。為了實現(xiàn)最高精度,應在電阻邊緣測量檢測電壓。圖7所示建議布局采用通孔,把焊盤外邊緣布局到另一層,從而避免切割主電源層。
 
http://www.yhcgroup.com/art/artinfo/id/80037890
圖7. 建議PCB走線路由
 
本文中的數(shù)據(jù)可能并不適用于所有電阻,而且結(jié)果可能因情況而異,具體取決于電阻的材質(zhì)和尺寸。應該咨詢電阻制造商。用戶有責任確保封裝的布局尺寸和結(jié)構(gòu)均符合各項SMT制造要求。對于因使用本封裝而可能導致的任何問題,ADI概不負責。
 
 
推薦閱讀:
 
如何設計具有COT的穩(wěn)定Fly-Buck轉(zhuǎn)換器(第2部分)
GTAT和安森美簽署生產(chǎn)和供應碳化硅材料的協(xié)議
μModul控制器如何裝入如此小的空間內(nèi)?
如何設計具有COT的穩(wěn)定Fly-Buck轉(zhuǎn)換器(第1部分)
TPS92692-Q1 Buck-Boost電路中的OVP電路設計
要采購焊盤么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
Knowles Lattice LCD LCD模組 LCR測試儀 lc振蕩器 Lecroy LED LED保護元件 LED背光 LED調(diào)光 LED模擬調(diào)光 LED驅(qū)動 LED驅(qū)動IC LED驅(qū)動模塊 LED散熱 LED數(shù)碼管 LED數(shù)字調(diào)光 LED顯示 LED顯示屏 LED照明 LED照明設計 Lightning Linear Litepoint Littelfuse LTC LTE LTE功放 LTE基帶
?

關閉

?

關閉