Altera Announces Quad-Core 64-bit ARM Cortex-A53 for
Stratix 10 SoCs
發(fā)布時(shí)間:2013-10-30 來源:Altera 責(zé)任編輯:xueqi
[Introduction]Altera Announces Quad-Core 64-bit ARM Cortex-A53 for Stratix 10 SoCs,Manufactured on Intel’s 14 nm Tri-Gate Process, it will offer exceptional adaptability, performance, power efficiency and design productivity for a broad range of applications, Altera Stratix® 10 SoCs Will Deliver Industry’s Most Versatile Heterogeneous Computing Platform.
Altera Corporation (NASDAQ: ALTR) today announced that its Stratix 10 SoC devices, manufactured on Intel’s 14 nm Tri-Gate process, will incorporate a high-performance, quad-core 64-bit ARM Cortex™-A53 processor system, complementing the device’s floating-point digital signal processing (DSP) blocks and high-performance FPGA fabric. Coupled with Altera’s advanced system-level design tools, including OpenCL, this versatile heterogeneous computing platform will offer exceptional adaptability, performance, power efficiency and design productivity for a broad range of applications, including data center computing acceleration, radar systems and communications infrastructure.
The ARM Cortex-A53 processor, the first 64-bit processor used on a SoC FPGA, is an ideal fit for use in Stratix 10 SoCs due to its performance, power efficiency, data throughput and advanced features. The Cortex-A53 is among the most power efficient of ARM’s application-class processors, and when delivered on the 14 nm Tri-Gate process will achieve more than six times more data throughput compared to today’s highest performing SoC FPGAs. The Cortex-A53 also delivers important features, such as virtualization support, 256TB memory reach and error correction code (ECC) on L1 and L2 caches. Furthermore, the Cortex-A53 core can run in 32-bit mode, which will run Cortex-A9 operating systems and code unmodified, allowing a smooth upgrade path from Altera’s 28 nm and 20 nm SoC FPGAs.
“ARM is pleased to see Altera adopting the lowest power 64-bit architecture as an ideal complement to DSP and FPGA processing elements to create a cutting-edge heterogeneous computing platform,” said Tom Cronk, executive vice president and general manager, Processor Division, ARM. “The Cortex-A53 processor delivers industry-leading power efficiency and outstanding performance levels, and it is supported by the ARM ecosystem and its innovative software community.”
Leveraging Intel’s 14 nm Tri-Gate process and an enhanced high-performance architecture, Altera Stratix 10 SoCs will have a programmable-logic performance level of more than 1GHz; two times the core performance of current high-end 28 nm FPGAs.
“High-end networking and communications infrastructure are rapidly migrating toward heterogeneous computing architectures to achieve maximum system performance and power efficiency,” said Linley Gwennap, principal analyst at The Linley Group, a leading embedded research firm. “What Altera is doing with its Stratix 10 SoC, both in terms of silicon convergence and high-level design tool support, puts the company at the forefront of delivering heterogeneous computing platforms and positions them well to capitalize on myriad opportunities.”
By standardizing on ARM processors across its three-generation SoC portfolio, Altera will offer software compatibility and a common ARM ecosystem of tools and operating system support. Embedded developers will be able to accelerate debug cycles with Altera’s SoC Embedded Design Suite (EDS) featuring the ARM Development Studio 5 (DS-5™) Altera® Edition toolkit, the industry’s only FPGA-adaptive debug tool, as well as use Altera’s software development kit (SDK) for OpenCL to create heterogeneous implementations using the OpenCL high-level design language .
“With Stratix 10 SoCs, designers will have a versatile and powerful heterogeneous compute platform enabling them to innovate and get to market faster,” said Danny Biran, senior vice president, corporate strategy and marketing at Altera. “This will be very exciting for customers as converged silicon continues to be the best solution for complex, high-performance applications.”
特別推薦
- 5mW待機(jī)功耗突圍戰(zhàn)!AC-DC電源待機(jī)功耗逼近物理極限
- 華為、地平線、大眾等企業(yè)引領(lǐng)汽車技術(shù)變革,來AMTS 2025了解更多汽車行業(yè)發(fā)展前景
- 關(guān)稅風(fēng)暴下車企們的生存法則:漲價(jià)+清庫+轉(zhuǎn)產(chǎn)三軸突圍
- 從智能座艙到駕控大腦:AMTS帶你暢游上海車展黑科技海洋
- 智能無線工業(yè)傳感器設(shè)計(jì)完全指南
- 硅光技術(shù)新突破:意法半導(dǎo)體PIC100開啟數(shù)據(jù)中心高能效時(shí)代
- 新唐科技以AI、新能源、汽車電子新品引領(lǐng)行業(yè)未來,巡回發(fā)布會(huì)完美收官!
技術(shù)文章更多>>
- 安森美公布 2025 年第一季度業(yè)績
- 鈑金成型又有突破:成本直降90%、周期減半!
- 電阻器分類、規(guī)格要素及全球頭部廠商對比分析
- 新唐科技以AI、新能源、汽車電子新品引領(lǐng)行業(yè)未來,巡回發(fā)布會(huì)完美收官!
- 硅光技術(shù)新突破:意法半導(dǎo)體PIC100開啟數(shù)據(jù)中心高能效時(shí)代
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)