第三代半導(dǎo)體材料盛行,GaN與SiC如何撬動(dòng)新型功率器件
發(fā)布時(shí)間:2017-04-24 責(zé)任編輯:susan
【導(dǎo)讀】功率管的發(fā)展微波功率器件近年來已經(jīng)從硅雙極型晶體管、場(chǎng)效應(yīng)管以及在移動(dòng)通信領(lǐng)域被廣泛應(yīng)用的LDMOS 管向以碳化硅(SiC)、氮鎵(GaN) 為代表的寬禁帶功率管過渡。
1.GaN
SiC、GaN材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場(chǎng)等突出優(yōu)點(diǎn),與剛石等半導(dǎo)體材料一起,被譽(yù)為是繼第一代Ge、Si半導(dǎo)體材料、第二代GaAs、InP化合物半導(dǎo)體材料之后的第三代半導(dǎo)體材料。
在光電子、高溫大功率器件和高頻微波器件應(yīng)用方面有著廣闊的前景。SiC功率器件在C波段以上受頻率的限制,也使其使用受到一定的限制;GaN 功率管因其大功率容量等特點(diǎn),成為發(fā)較快的寬禁帶器件。GaN功率管因其高擊穿電壓、高線性性能、高效率等優(yōu)勢(shì),已經(jīng)在無線通信基站、廣播電視、電臺(tái)、干擾機(jī)、大功率雷達(dá)、電子對(duì)抗、衛(wèi)星通信等領(lǐng)域有著廣泛的應(yīng)用和良好的使用前景。
GaN大功率的輸出都是采用增加管芯總柵寬的方法來提高器件的功率輸出,這樣使得管芯輸入、輸出阻抗變得很低,引入線及管殼寄生參數(shù)對(duì)性能的影響很大,一致直接采用管殼外的匹配方法無法得到大的功率輸出甚至無法工作。解決方法就是在管殼內(nèi)引入內(nèi)匹配電路,因此內(nèi)匹配對(duì)發(fā)揮 GaN 功率管性能上的優(yōu)勢(shì),有非常重要的現(xiàn)實(shí)意義。
2.SIC
碳化硅(SiC)以其優(yōu)良的物理化學(xué)特性和電特性成為制造高溫、大功率電子器件的一種最具有優(yōu)勢(shì)的半導(dǎo)體材料.并且具有遠(yuǎn)大于Si材料的功率器件品質(zhì)因子。SiC功率器件的研發(fā)始于20世紀(jì)90年代.目前已成為新型功率半導(dǎo)體器件研究開發(fā)的主流。2004年SiC功率MOSFET不僅在高耐壓指標(biāo)上達(dá)到了硅MOSFET無法達(dá)到的10 kV.而且其開態(tài)比電阻向理論極限靠近了一大步.可達(dá)123 mQ·cm2。SiC隱埋溝道MOSFET(BCMOS)是MOS工藝最有潛力的新秀.它不僅解決了溝道遷移率低的問題,且能很好地與MOS器件工藝兼容。研究出的SiC BCMOS器件遷移率達(dá)到約720 cm2/(V·s);SiC雙極晶體管(BJT)在大功率應(yīng)用時(shí)優(yōu)勢(shì)明顯;經(jīng)研究得到了擊穿電壓為1.677 kV。開態(tài)比電阻為5.7 mQ·cm2的4H—SiC BJT
3.SiC MOSFET的研究
MOSFET在目前的超大規(guī)模集成電路中占有極其重要的地位,而SiC作為唯一一種本征的氧化物是SiO,的化合物半導(dǎo)體。這就使得MOSFET在SiC功率電子器件中具有重要的意義。2000年研制了國內(nèi)第一個(gè)SiC MOSFETt31。器件最大跨導(dǎo)為0.36mS/mm,溝道電子遷移率僅為14 cm2/(V·s)。反型層遷移率低已成為限制SiC MOSFET發(fā)展的主要因素。理論和實(shí)驗(yàn)均表明.高密度的界面態(tài)電荷和非理想平面造成的表面粗糙是導(dǎo)致SiC MOS器件表面
遷移率低的主要因素。用單電子Monte Carlo方法對(duì)6H—SiC反型層的電子遷移率進(jìn)行模擬,模擬中考慮了界面電荷的庫侖散射和界面粗糙散射,提出了新的綜合型庫侖散射模型和界面粗糙散射指數(shù)模型141。模擬結(jié)果表明.當(dāng)表面有效橫向電場(chǎng)高于1.5x105V/cm時(shí).表面粗糙散射在SiC反型層中起主要作用;反之,溝道散射以庫侖散射為主,此時(shí)高密度的界面態(tài)電荷將成為降低溝道遷移率的主要因素。
4.總結(jié)
通過學(xué)習(xí)這兩款新型的功率器件,不僅在設(shè)計(jì)上,更取得了實(shí)質(zhì)性的效果。
特別推薦
- 帶寬可調(diào)+毫米波集成:緊湊型濾波器技術(shù)全景解析
- 電感傳感破局線控技術(shù)系統(tǒng)!汽車機(jī)械架構(gòu)的數(shù)字化革命
- 西南科技盛宴啟幕!第十三屆西部電博會(huì)7月9日蓉城集結(jié)
- 硬件加速+安全加密:三合一MCU如何簡(jiǎn)化電機(jī)系統(tǒng)設(shè)計(jì)
- 智能家電的“動(dòng)力心臟”:專用電機(jī)控制MCU技術(shù)全景解析
- 溫漂±5ppm的硬核科技:車規(guī)薄膜電阻在衛(wèi)星與6G中的關(guān)鍵作用
- 從誤報(bào)到精準(zhǔn)預(yù)警:多光譜MCU重構(gòu)煙霧探測(cè)邊界
技術(shù)文章更多>>
- 三新驅(qū)動(dòng)西部崛起:第十三屆西部電子信息博覽會(huì)成都盛大啟幕
- 電感傳感破局線控技術(shù)系統(tǒng)!汽車機(jī)械架構(gòu)的數(shù)字化革命
- 聚合物電容全景解析:從納米結(jié)構(gòu)到千億市場(chǎng)的國產(chǎn)突圍戰(zhàn)
- 功率電感四重奏:從筆記本到光伏,解析能效升級(jí)的隱形推手
- KEMET T495/T520 vs AVX TAJ鉭電容深度對(duì)比:如何選擇更適合你的設(shè)計(jì)?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
DDR3
DIY
DRAM
DSP
DSP
D-SUB連接器
DVI連接器
EEPROM
Element14
EMC
EMI
EMI濾波器
Energy Micro
EPB
ept
ESC
ESD
ESD保護(hù)
ESD保護(hù)器件
ESD器件
Eurotect
Exar
Fairhild
FFC連接器
Flash
FPC連接器
FPGA
Fujitsu
Future
GFIVE