-
什么是射頻衰減器?如何為我的應(yīng)用選擇合適的RF衰減器?
本文延續(xù)之前的一系列短文,面向非射頻工程師講解射頻技術(shù);我們將探討IC衰減器,并針對其類型、配置和規(guī)格提出一些見解。本文旨在幫助工程師更快了解各種IC產(chǎn)品,并為終端應(yīng)用選擇合適的產(chǎn)品。該系列的相關(guān)文章包括:"為應(yīng)用選擇合適的RF放大器指南"、"如何輕松選擇合適的頻率產(chǎn)生器件"和"RF解密–...
2022-09-28
RF 衰減器 終端應(yīng)用
-
多波束相控陣接收機混合波束成型功耗優(yōu)勢的定量分析
本文對模擬、數(shù)字和混合波束成型架構(gòu)的能效比進行了比較,并針對接收相控陣開發(fā)了這三種架構(gòu)的功耗的詳細方程模型。該模型清楚說明了各種器件對總功耗的貢獻,以及功耗如何隨陣列的各種參數(shù)而變化。對不同陣列架構(gòu)的功耗/波束帶寬積的比較表明,對于具有大量元件的毫米波相控陣,混合方法具有優(yōu)勢。
2022-09-28
相控陣 接收機 波束成型
-
LOTO示波器 實測開環(huán)增益頻響曲線/電源環(huán)路響應(yīng)穩(wěn)定性
一般我們用的電源系統(tǒng)/控制系統(tǒng)或者信號處理系統(tǒng)都可以簡單理解成負反饋控制系統(tǒng)。最典型的,運放組成的信號放大電路就是這樣的系統(tǒng)。本文以最簡單的運放信號放大電路為例,演示如何使用LOTO示波器測量控制系統(tǒng)的開環(huán)增益頻響曲線,以及演示電源的環(huán)路響應(yīng)穩(wěn)定性測試。
2022-09-26
LOTO示波器 開環(huán)增益頻響曲線 電源環(huán)路
-
混合波束賦形接收機動態(tài)范圍—從理論到實踐
本文介紹了相控陣混合波束賦形架構(gòu)中接收機動態(tài)范圍指標的測量與分析的比較。測量使用市售32通道開發(fā)平臺進行驗證分析。本文回顧了子陣列波束賦形接收機的分析,重點是處理模擬子陣列中信號合并點處的信號增益與噪聲增益之間的差異。本文分析了開發(fā)平臺接收機性能,并與測量結(jié)果進行了比較。最后討...
2022-09-26
波束賦形 接收機 動態(tài)范圍
-
整流電容濾波負載實例
六期連載,整流電路AC/DC變換應(yīng)用非常廣泛,其中二極管整流在電機驅(qū)動中是主流的方案,而且功率范圍很廣,所以了解二極管整流工程設(shè)計非常重要。
2022-09-23
整流 電容濾波 負載
-
功率放大器模塊及其在5G設(shè)計中的作用
許多射頻設(shè)計人員都對 Franklin Douglass 的名言深有同感:“沒有斗爭就沒有進步?!痹跒?5G 進行設(shè)計時,尤其如此??萍加型淖儫o線通信,但也會帶來設(shè)計難題。利用功率放大器模塊 (PAM) 來化解。以下是你需要知道的一切。
2022-09-23
功率放大器 模塊 5G
-
整流電容濾波負載原理——看似簡單的整流電路詳解(四)
六期連載,整流電路AC/DC變換應(yīng)用非常廣泛,其中二極管整流在電機驅(qū)動中是主流的方案,而且功率范圍很廣,所以了解二極管整流工程設(shè)計非常重要。
2022-09-16
整流 電容濾波 原理
-
讓數(shù)字預(yù)失真的故障排除和微調(diào)不再難 必備攻略請查收
本文介紹ADI ADRV9002的數(shù)字預(yù)失真(DPD)功能。所用的一些調(diào)試技術(shù)也可應(yīng)用于一般DPD系統(tǒng)。首先,概述關(guān)于DPD的背景信息,以及用戶試驗其系統(tǒng)時可能會遇到的一些典型問題。最后,文章介紹在DPD軟件工具幫助下可應(yīng)用于DPD算法以分析性能的調(diào)優(yōu)策略。
2022-09-16
數(shù)字預(yù)失真 ADI ADRV9002
-
GaN HEMT 大信號模型
GaN HEMT 為功率放大器設(shè)計者提供了對 LDMOS、GaAs 和 SiC 技術(shù)的許多改進。更有利的特性包括高電壓操作、高擊穿電壓、功率密度高達 8 W/mm、fT 高達 25 GHz 和低靜態(tài)電流。另一方面,GaN RF 功率器件具有自加熱特性,并且元件參數(shù)的非線性與信號電平、熱效應(yīng)和環(huán)境條件之間存在復(fù)雜的依賴關(guān)系。這...
2022-09-15
GaN HEMT 功率放大器
- 芯片級安全守護!800V電池管理中樞如何突破高壓快充瓶頸
- 功率電感器核心技術(shù)解析:原理、選型策略與全球品牌競爭力圖譜
- 鉭電容技術(shù)全景解析:從納米級介質(zhì)到AI服務(wù)器供電革命
- 西南科技盛宴啟幕!第十三屆西部電博會7月9日蓉城集結(jié)
- KEMET T495/T520 vs AVX TAJ鉭電容深度對比:如何選擇更適合你的設(shè)計?
- 功率電感四重奏:從筆記本到光伏,解析能效升級的隱形推手
- 聚合物電容全景解析:從納米結(jié)構(gòu)到千億市場的國產(chǎn)突圍戰(zhàn)
- 村田開始量產(chǎn)村田首款0402英寸47μF多層陶瓷電容器
- 灣芯展2025預(yù)登記啟動!10月深圳共襄半導(dǎo)體盛宴
- 智能家居開發(fā)指南上線!貿(mào)澤電子發(fā)布全棧式設(shè)計資源中心
- 300mm晶圓量產(chǎn)光學(xué)超表面!ST與Metalenz深化納米光學(xué)革命
- 可變/微調(diào)電容終極指南:從MEMS原理到國產(chǎn)替代選型策略
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall