-
跨阻放大器的輸入阻抗是多少呢?
跨阻放大器(TIA)的輸入阻抗是多少呢?無窮大還是零呢?都不是,究竟是多少?沒有事物是絕對為零或絕對無窮大的,對嗎?即使你沒有用過TIA, TIA輸入阻抗的值會讓你驚訝,值得你去理解。畢竟,一個反向放大器就是一個有輸入電阻的TIA ,對嗎?
2020-03-30
-
詳解220 V精密運算放大器
ADHV4702-1 是一款高壓(220 V)、單位增益穩(wěn)定精密運算放大器。ADI新一代專有半導體工藝和創(chuàng)新架構使該精密運算放大器能夠以±110 V的對稱雙電源、非對稱雙電源或220 V單電源供電。
2020-03-25
-
什么是運算放大器?
許多教材和參考指南將運算放大器(運放)定義為可以執(zhí)行各種功能或操作(如放大、加法和減法)的專用集成電路(IC)。雖然我同意這個定義,但仍需注重芯片的輸入引腳的電壓。
2020-03-23
-
壓阻式傳感器的典型特點是什么?
壓阻式傳感器的靈敏系數比金屬應變式壓力傳感器的靈敏度系數要大50-100倍。有的時候壓阻式傳感器的輸出不需要放大器就可直接進行測量。
2020-03-18
-
過采樣ADC與PGA結合,提供127dB動態(tài)范圍
電子行業(yè)經常需要測量寬動態(tài)范圍信號,但目前的技術常常難以滿足系統(tǒng)的實際要求。電子秤系統(tǒng)通常采用稱重橋式傳感器,最大滿量程輸出為1 mV至2 mV。這種系統(tǒng)要求分辨率約為1000000:1,折合到2 mV輸入端時,需要高性能、低噪聲、高增益放大器和∑-?調制器。與此類似,醫(yī)療應用中進行化學和血液分析時經常會采用光電二極管傳感器,產生的電流很小,需要精確測量(如圖1所示)。通常采用的是低噪聲跨導放大器,該放大器有多級增益和后處理功能。
2020-03-16
-
用于數據采集的超高性能差分輸出可編程增益儀表放大器
數據采集系統(tǒng)和可編程邏輯控制器(PLC)需要多功能的高性能模擬前端,以便與各種傳感器進行接口,來精確、可靠地測量信號。根據傳感器具體類型和待測電壓/電流幅度的不同,信號可能需要放大或衰減,從而匹配模數轉換器(ADC)的滿量程輸入范圍,以供進一步的數字處理和反饋控制。
2020-03-13
-
利用低功耗、單位增益差動放大器實現低成本電流源
刊登于2009年9月《模擬對話》雜志的"差動放大器構成精密電流源的核心,"一文描述了如何利用單位增益差動放大器AD8276和微功耗運算放大器AD8603來實現精密電流源。圖1所示為該電路針對低成本、低電流應用的簡化版本。
2020-03-11
-
運算放大器的簡易測量
運算放大器是差分輸入、單端輸出的極高增益放大器,常用于高精度模擬電路,因此必須精確測量其性能。但在開環(huán)測量中,其開環(huán)增益可能高達107或更高,而拾取、雜散電流或塞貝克(熱電偶)效應可能會在放大器輸入端產生非常小的電壓,這樣誤差將難以避免。
2020-03-10
-
高分辨率溫度測量
熱電偶放大器AD8494內置一個片內溫度傳感器,一般用于冷結補償,將熱電偶輸入端接地,該器件便可用作一個獨立的攝氏溫度計。在這種配置中,放大器在片內儀表放大器的輸出引腳與(一般接)參考引腳之間產生5 mV/°C的輸出電壓。這種方法有一個缺點,當測量較窄范圍的溫度時,系統(tǒng)分辨率不佳。考慮這一情況:采用5 V單電源供電的10位ADC具有4.88 mV/LSB的分辨率。這意味著,圖1所示的系統(tǒng)具有約1°C/LSB的分辨率。如果目標溫度范圍較窄,例如20°C,則輸出改變幅度為100 mV,ADC的可用動態(tài)范圍僅有1/50得到利用。
2020-03-10
-
模擬熱電堆探頭的手持式紅外測溫儀原理分析
手持式紅外測溫儀可以實現非接觸近距離測量人體的溫度,非常方便用于臨時快速的體溫測量。目前隨著疫情的發(fā)展,在進出小區(qū),公共場所等地方,都需要用到手持式紅外測溫儀,潤石科技作為一家擁有高性能模擬信號鏈設計能力的公司,旗下產品線跟紅外測溫儀、醫(yī)療設備等產品具有非常高的匹配度,包括運算放大器,比較器,模擬開關,LDO 等產品。
2020-03-09
-
升壓放大器讓設備兼具小身材和大音量
消費者現在都用非常小巧的設備來聽音樂,但是鋰電池和低壓電源通常不能實現大音量的音頻效果。升壓放大器因其可以增加響度,同時能實現極小尺寸的封裝和超低的功耗日漸流行。
2020-03-06
-
如何輕松穩(wěn)定帶感性開環(huán)輸出阻抗的運算放大器?
一些運算放大器(運放)具有感性開環(huán)輸出阻抗,穩(wěn)定這一類運放可能比阻性輸出阻抗的運算放大器更為復雜。最常用的技術之一是使用“斷開環(huán)路”方法,這涉及到斷開閉環(huán)電路的反饋環(huán)路和查看環(huán)路增益以確定相位裕度。
2020-02-27
- 芯片級安全守護!800V電池管理中樞如何突破高壓快充瓶頸
- 功率電感器核心技術解析:原理、選型策略與全球品牌競爭力圖譜
- 鉭電容技術全景解析:從納米級介質到AI服務器供電革命
- 西南科技盛宴啟幕!第十三屆西部電博會7月9日蓉城集結
- KEMET T495/T520 vs AVX TAJ鉭電容深度對比:如何選擇更適合你的設計?
- 功率電感四重奏:從筆記本到光伏,解析能效升級的隱形推手
- 聚合物電容全景解析:從納米結構到千億市場的國產突圍戰(zhàn)
- 村田開始量產村田首款0402英寸47μF多層陶瓷電容器
- 灣芯展2025預登記啟動!10月深圳共襄半導體盛宴
- 智能家居開發(fā)指南上線!貿澤電子發(fā)布全棧式設計資源中心
- 300mm晶圓量產光學超表面!ST與Metalenz深化納米光學革命
- 可變/微調電容終極指南:從MEMS原理到國產替代選型策略
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall