-
帶精密電源基準電平轉(zhuǎn)換的高性能差分放大器
采用小尺寸工藝設(shè)計的高性能ADC通常采用1.8V至5V單電源供電。為了處理±10 V或更大的信號,ADC一般前置一個放大器電路以衰減該信號,防止輸入端飽和。在信號包含大共模電壓時普遍采用差分放大器(diff amp)。
2020-02-07
-
高速電流反饋型放大器如何驅(qū)動并均衡最長100米的VGA電纜
在課堂、演講廳和會議室,PC通過VGA電纜連接到投影儀,以傳輸紅綠藍(RGB)視頻信號。平均電纜長度取決于房間大小和天花板高度,但多數(shù)電纜不超過100米。本文介紹集成電荷泵的三通道高速電流反饋型運算放大器ADA4858-31(見附錄)如何能驅(qū)動并均衡最長達100米的VGA電纜。這種解決方案用在PC與電纜之間,便于使用,成本低廉,易于實施,只需幾個無源組件,并從USB端口獲得3.3V至5V單電源。
2020-02-06
-
內(nèi)置片內(nèi)電阻的雙路差動放大器實現(xiàn)精密ADC驅(qū)動器
配有運算放大器和外部增益設(shè)置電阻的分立式差動放大器精度一般,并且溫度漂移明顯。采1%、100ppm/°C標準電阻,最高2%的初始增益誤差最多會改變200 ppm/°C,并且通用于精密增益設(shè)置的單片電阻網(wǎng)絡(luò)過于龐大且成本較高。此外,大多數(shù)分立式運算放大器電路的共模抑制都比較差,并且輸入電壓范圍小于電源電壓。雖然單片差分放大器的共模抑制比較好,但由于片內(nèi)器件與外部增益電阻之間本身不匹配,所以單片差分放大器仍存在增益漂移問題。
2020-02-06
-
G = 1/2的差分輸出差動放大器系統(tǒng)
采用小尺寸工藝設(shè)計的高性能ADC通常采用1.8V至5V單電源或±5V雙電源供電。為了處理±10 V或更大的實際信號,ADC一般前置一個放大器以衰減該信號,防止ADC輸入端出現(xiàn)飽和或受損。這種放大器通常具有單端輸出,但為了獲得差分輸入ADC的全部優(yōu)勢,包括更高動態(tài)范圍、更佳共模抑制性能和更低的噪聲敏感度,具有差分輸出會更有利。圖1顯示一個增益為1/2的差分輸出放大器系統(tǒng)。
2020-02-05
-
超低失真音頻Panpot放大器
圖1所示為一個音頻Panpot電路,通過在左右立體聲聲道之間連續(xù)改變單聲道音頻信號的位置來響應(yīng)電位器的設(shè)置。低成本和低失真是音頻電路的重要考慮因素。雙通道低失真差動放大器AD8273利用內(nèi)部增益設(shè)置電阻確保兩個通道匹配出色。它無需外部器件,每個通道均配置為兩個高性能放大器,增益為3。在音頻范圍內(nèi),總諧波失真小于0.0007%。
2020-02-04
-
單IC增益模塊提供?到6的精密增益
許多應(yīng)用都需要利用增益模塊來放大弱信號或衰減大信號,使之與ADC的滿量程輸入范圍匹配。遺憾的是,采用分立放大器和外部電阻的典型增益模塊有很多缺點,例如低精度和漂移限制等。舉例來說,采用標準1%、100 ppm/°C增益電阻時,初始增益誤差可能達到2%,溫漂可能達到200 ppm/°C。
2020-02-04
-
使用萬用表測量隨機噪聲信號
隨機噪聲信號在電路中很常見到。有的時候需要消除它,但有的時候也可以利用它完成測量。比如在測試放大器的有效帶寬、對系統(tǒng)進行辨識、確定系統(tǒng)所受到的干擾來源、以及測量一些基礎(chǔ)物理量等。那么,使用數(shù)字萬用表是否可以測量隨機噪聲大小呢?
2020-02-04
-
為什么不能將乘法器用作調(diào)制器或混頻器?
調(diào)制器(或混頻器)也有兩個輸入,但信號輸入是線性的,而載波輸入包含一個限幅放大器,或利用受它限制的足夠大信號驅(qū)動。無論何種情況,載波信號都會變成一個方波,因此其幅度相對不重要——只要足夠大,而且其噪聲或幅度變化不會出現(xiàn)在輸出端。
2020-01-19
-
實例分析一款精密Σ-Δ型ADC
AD717x是ADI最新系列的精密Σ-Δ型ADC。該ADC系列是市場上第一個提供真正24位無噪聲輸出的轉(zhuǎn)換器系列。AD717x器件可使對噪聲異常敏感的儀器儀表電路的動態(tài)范圍最大化,支持降低或消除信號調(diào)理級中的前置放大器增益。這些器件還能高速運行,提供比以前更短的建立時間。由此可縮短控制環(huán)路對輸入激勵信號的響應(yīng)時間,或通過更快的每通道吞吐速率來提高轉(zhuǎn)換通道密度。
2020-01-17
-
利用差動放大器實現(xiàn)低功耗、高性能絕對值電路
傳統(tǒng)上,精密半波和全波整流器均采用精心挑選的元件,這些元件包括高速運算放大器、快速二極管和精密電阻。元件數(shù)量繁多致使這種解決方案成本很高,而且無法擺脫元件間交越失真、溫度漂移變化的困擾。
2020-01-16
-
驅(qū)動PIN二極管: 運算放大器方案
PIN二極管在重摻雜的P 區(qū)和 N 區(qū)之間夾有一層輕摻雜的本征區(qū)(I),此類二極管廣泛用于射頻與微波領(lǐng)域。常見應(yīng)用是要求高隔離度和低損耗的微波開關(guān)、移相器和衰減器。在測試設(shè)備、儀器儀表、通信設(shè)備、雷達和各種軍事應(yīng)用中,可以發(fā)現(xiàn)這類二極管的身影。
2020-01-15
-
零漂移運算放大器
零漂移放大器適用于預(yù)期設(shè)計壽命 10 年以上的系統(tǒng),以及使用高閉環(huán)增益 (>100) 和低頻 (<100 Hz)、低幅度信號的信號鏈。應(yīng)用示例包括精密電子秤、醫(yī)療儀器、精密計量設(shè)備和紅外/電橋/熱電堆傳感器接口。
2020-01-15
- 智能終端的進化論:邊緣AI突破能耗與安全隱私的雙重困局
- 水泥電阻技術(shù)深度解析:選型指南與成本對比
- 滑動分壓器的技術(shù)解析與選型指南
- 如何通過 LLC 串聯(lián)諧振轉(zhuǎn)換器優(yōu)化LLC-SRC設(shè)計?
- 超聲波清洗暗藏"芯片密碼":二氧化硅顆粒撞擊機理揭秘
- 運動追蹤+沖擊檢測雙感知!意法半導(dǎo)體微型AI傳感器開啟智能設(shè)備新維度
- 線繞電阻與金屬氧化物電阻技術(shù)對比及選型指南
- 拓撲優(yōu)化:解鎖電池供電設(shè)備高效設(shè)計密碼
- 鋁殼電阻技術(shù)解析:原理、優(yōu)勢與產(chǎn)業(yè)生態(tài)全景
- 厚膜電阻在消費電子電源管理及家電控制中的技術(shù)應(yīng)用與創(chuàng)新
- 從光伏到充電樁,線繞電阻破解新能源設(shè)備浪涌防護難題
- GMSL雙模解析:像素模式和隧道模式如何突破傳輸瓶頸
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall