-
寬禁帶半導體賦能:GaN射頻放大器的應用前景
射頻功率放大器(PA)作為無線系統(tǒng)的核心部件,其性能直接影響整個通信鏈路的可靠性。隨著5G NR和毫米波技術的普及,現代PA面臨三大核心挑戰(zhàn):效率與線性度的平衡、熱管理優(yōu)化,以及寬帶匹配的實現。
2025-11-10
-
HT876立體聲音頻功放芯片:兼容雙模式的便攜音頻功率放大新選擇
在藍牙音箱、智能音響、便攜播放器等設備的設計中,音頻功率放大器是決定音質、體積和續(xù)航的核心元件。工程師們常常面臨這樣的矛盾:既要小體積、低功耗,又要高保真的音質;既要適應不同場景的功率需求,又要簡化電路設計。HT876立體聲音頻功率放大器芯片的出現,為解決這一矛盾提供了完美方案——它兼容D類和AB類兩種工作模式,采用免濾波器調制技術,在簡化電路的同時,實現了高音質與長續(xù)航的平衡,成為便攜音頻設備研發(fā)的理想選擇。
2025-08-26
-
高精度低噪聲 or 大功率強驅動?儀表放大器與功率放大器選型指南
在現代電子系統(tǒng)的精密舞臺上,兩類關鍵“演員”——儀表放大器(In-Amp)與功率放大器(Power Amp)——扮演著截然不同卻都不可或缺的角色。它們雖共享“放大”之名,但設計哲學、核心任務與應用疆域存在本質差異。理解這種差異,是工程師為系統(tǒng)挑選“最佳配角”的關鍵。
2025-06-20
-
預補償方法以減少Class D功率放大器的爆裂噪聲
如今,Class D功率放大器在音頻系統(tǒng)中被廣泛使用。然而,在放大器啟動或關閉時,以及在靜音/取消靜音切換期間,揚聲器中經常會出現爆裂聲或點擊聲。這些噪音可能會被聽到,并使用戶感到不適。在音頻系統(tǒng)中靜音功率放大器是避免在啟動或關閉期間出現爆裂聲的有效方法。此外,音頻系統(tǒng)有時播放音樂,有時停止播放,這需要頻繁地靜音或取消靜音放大器。因此,爆裂聲是頻繁靜音和取消靜音控制的關鍵問題。本文討論了靜音/取消靜音過渡期間爆裂聲的發(fā)生原因,并設計了相應的方法來抑制這些噪音。
2024-09-29
-
從4個到256個通道,GaN技術如何創(chuàng)新5G基站系統(tǒng)的緊湊設計
電子系統(tǒng)工程師們正在適應5G基站設計領域的重大變革;包括發(fā)射/接收通道的數量從4個激增至高達256個。同時,這些基站的頻率范圍也有所提升,從原先的1GHz擴展到現在的3-4GHz,并有望達到7GHz。隨著更多通道的引入(如上述256個收發(fā)通道這樣的配置),對既高效又具備精確信號能力的功率放大器的需求也愈發(fā)迫切。此外,推動構建更緊湊的蜂窩網絡還涉及集成大規(guī)模多入多出(mMIMO)波束成形、小型基站和毫米波基站等先進技術。
2024-05-17
-
電子應用中的潛在熱源及各種熱管理方法
電子元器件不喜歡在高溫下運行。任何表現出內部自發(fā)熱效應的元器件,都會導致自身和周圍其他元器件的可靠性降低,長期過熱甚至還可能導致印刷電路板(PCB)變形,降低與其他元器件的連接完整性,并影響走線阻抗。通常情況下,容易產生廢熱的元器件包括電源和各種形式的功率放大器[音頻或射頻(RF)],但現代片上系統(tǒng)(SoC)、電源轉換模塊和高性能微處理器也會產生大量內部熱量。
2024-02-20
-
詳解多路復用器濾波器
多路復用器是一組射頻(RF)濾波器,它們組合在一起,但不會彼此加載,可以在輸出之間實現高度隔離。多路復用器被用于RF前端中靠近功率放大器(PA)的位置,對于載波聚合(CA)產生很大影響;天線復用器被用在射頻前端后面,以簡化與天線之間的路由。
2024-01-25
-
基于RT9119 的家庭版高效能音效放大器設計
隨著電子產品的不斷發(fā)展,功率放大器的性能對產品質量有著重要的影響。傳統(tǒng)的線性功放(A、B、AB類)雖然有良好的線性度和THD等性能,但都有共同的缺陷,如效率都低于50%、功耗大,制約其在可攜式產品上的應用[1],而高效率、節(jié)能、低失真、體積小的D類功放應用日益廣泛。
2024-01-11
-
功率放大器模塊及其在5G設計中的作用
5G是無線通信領域有史以來最重要、最強大的技術之一。與4G相比,5G在數據傳輸速率、延遲和容量方面均實現了顯著提升,有望成為影響業(yè)界乃至全球的真正變革性技術。
2024-01-03
-
自主創(chuàng)新無止境 探索電磁新未來——王路會長一行走訪調研南京納特通信電子有限公司
2023年11月30日,上海市計量協(xié)會會長王路一行,攜秘書處和電磁兼容專委會成員赴南京納特通信電子有限公司(以下簡稱“納特通信”)開展主題為“國產功率放大器研發(fā)現狀和前景”的調研學習。
2023-12-14
-
pHEMT功率放大器的有源偏置解決方案
假晶高電子遷移率晶體管(pHEMT)是耗盡型器件,其漏源通道的電阻接近0 Ω。此特性使得這些器件可以在高開關頻率下以高增益運行。然而,如果柵極和漏極偏置時序不正確,漏極溝道的高電導率可能會導致器件燒毀。本文探討耗盡型pHEMT射頻(RF)放大器的工作原理以及如何對其有效偏置。耗盡型場效應晶體管(FET)需要負柵極電壓,并且必須小心控制開啟/關斷的時序。文中將介紹并比較固定柵極電壓和固定漏極電流電路。我們還將仔細研究這些偏置電路的噪聲和雜散對RF性能有何影響。
2023-11-22
-
面向GaN功率放大器的電源解決方案
RF前端的高功率末級功放已被GaN功率放大器取代。柵極負壓偏置使其在設計上有別于其它技術,有時設計具有一定挑戰(zhàn)性;但它的性能在許多應用中是獨特的。閱讀本文,了解Qorvo的電源管理解決方案如何消除GaN的柵極偏置差異。
2023-11-22
- 國產濾波技術突破:金升陽FC-LxxM系列實現寬電壓全場景覆蓋
- 空間受限難題有解:Molex SideWize直角連接器重塑高壓布線架構
- 信號切換全能手:Pickering 125系列提供了從直流到射頻的完整舌簧繼電器解決方案
- 射頻供電新突破:Flex發(fā)布兩款高效DC/DC轉換器,專攻微波與通信應用
- 電源架構革新:多通道PMIC并聯(lián)實現大電流輸出的設計秘籍
- 百克級 MR 眼鏡的 “心臟” 揭秘:萬有引力 G-X100 芯片領跑全球
- 告別安全隱患?‘史上最嚴’充電寶國標即將出臺,劣質產品無處遁形
- “芯”品發(fā)布|鎵未來推出“9mΩ”車規(guī)級 GaN FET ,打破功率氮化鎵能效天花板!
- Home Bus系統(tǒng)電感選型避坑指南:PoD應用中的關鍵考量
- 工程師必讀:步進電機選型避坑指南,精準匹配應用需求
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall





