-
SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作
MOSFET和IGBT等電源開關(guān)元器件被廣泛應(yīng)用于各種電源應(yīng)用和電源線路中。另外,所使用的電路方式也多種多樣,除單獨(dú)使用外,還有串聯(lián)連接、并聯(lián)連接等多種使用方法。
2022-02-11
-
理想開關(guān)自身會帶來挑戰(zhàn)
隨著我們的產(chǎn)品接近邊沿速率超快的理想半導(dǎo)體開關(guān),電壓過沖和振鈴開始成為問題。適用于SiC FET的簡單RC緩沖電路可以解決這些問題,并帶來更高的效率增益。
2022-02-10
-
派恩杰SiC驅(qū)動設(shè)計(jì)新探索:如何避免誤開通?
隨著SiC 工藝逐漸成熟和成本不斷下降,SiC MOSFET憑借整體性能優(yōu)于硅基器件一個(gè)數(shù)量級的優(yōu)勢正逐漸普及,獲得越來越多的工程應(yīng)用。相較于傳統(tǒng)的Si功率器件,SiC MOSFET具有更小的導(dǎo)通電阻,更快的開關(guān)速度,使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實(shí)現(xiàn)變換器的高效高功率密度化,因此廣泛適用于5G數(shù)據(jù)中心通信電源,新能源汽車車載充電機(jī),電機(jī)驅(qū)動器,工業(yè)電源,直流充電樁,光伏,UPS等各類能源變換系統(tǒng)中。
2022-02-10
-
SiC功率器件使用過程中的常見問題集(上)
由于SiC 材料具有更高的擊穿場強(qiáng)、更好的熱穩(wěn)定性、更高的電子飽和速度及禁帶寬度,因此能夠大大提高功率器件的性能表現(xiàn)。相較于傳統(tǒng)的Si功率器件,SiC 器件具有更快的開關(guān)速度,更好的溫度特性使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實(shí)現(xiàn)變換器的高效高功率密度化。當(dāng)前碳化硅功率器件主要在新能源汽車的車載充電機(jī)、充電樁、計(jì)算機(jī)電源、風(fēng)電逆變器、光伏逆變器、大型服務(wù)器電源、空調(diào)變頻器等領(lǐng)域,根據(jù)Yole估計(jì),未來市場將有每年30% 左右的高速增長。為此,派恩杰推出1700V,1200V,650V各種電壓等級SiC MOSFET以應(yīng)對市場需求。在從硅器件到碳化硅器件使用轉(zhuǎn)變過程中,客戶常常會遇到一些疑問或者使用問題,為此,派恩杰針對客戶的問題進(jìn)行歸納總結(jié)并分享一些解決辦法。
2022-02-09
-
將ICT和FCT優(yōu)勢結(jié)合在單個(gè)測試適配器中
一般以針床來測試不上電的電路板,使用直接數(shù)字合成(DDS)和離散傅立葉變換(DFT)等技術(shù)生成刺激信號進(jìn)行模擬測量分析,以此讓在線測試儀(ICA)測量電感、電容、阻抗和電阻等實(shí)際數(shù)據(jù),以便確認(rèn)所有被測器件(DUT)測試節(jié)點(diǎn)的結(jié)果在公差范圍內(nèi),以及是否有開路、短路、錯(cuò)件或極性接反的問題。這些都在不上電的情況下進(jìn)行測量。繼電器多路復(fù)用器可以用來連接探針觸點(diǎn)和電路板的模擬通道或數(shù)字驅(qū)動器/傳感器(D/S)(圖1)。
2022-02-09
-
適用于電流模式DC-DC轉(zhuǎn)換器的統(tǒng)一的LTspice AC模型
當(dāng)電源設(shè)計(jì)人員想要大致了解電源的反饋環(huán)路時(shí),他們會利用環(huán)路增益和相位波特圖。知道環(huán)路響應(yīng)可進(jìn)行預(yù)測有助于縮小反饋環(huán)路補(bǔ)償元件的選擇范圍。
2022-02-09
-
針對SiC串?dāng)_抑制方法的測試報(bào)告
近年來,以SiCMOSFET 為代表的寬禁帶半導(dǎo)體器件因其具有高開關(guān)頻率、高開關(guān)速度、高熱導(dǎo)率等優(yōu)點(diǎn),已成為高頻、高溫、高功率密度電力電子變換器的理想選擇。然而隨著SiC MOSFET開關(guān)速度加快,橋式電路受寄生參數(shù)影響加劇,串?dāng)_現(xiàn)象更加嚴(yán)重。由于SiC MOSFET 正向閾值電壓與負(fù)向安全電壓較小,串?dāng)_問題引起的正負(fù)向電壓尖峰更容易造成開關(guān)管誤導(dǎo)通或柵源極擊穿,進(jìn)而增加開關(guān)損耗,嚴(yán)重時(shí)損壞開關(guān)管,因此合適的串?dāng)_抑制方法對提高變換器工作可靠性、提升其功率密度具有重要意義。
2022-02-08
-
如何仿真轉(zhuǎn)換器的數(shù)字輸入/輸出
對于SAR-ADC的仿真比較復(fù)雜。目前來看,還沒有準(zhǔn)確模擬整個(gè)器件的完整轉(zhuǎn)換器模型?,F(xiàn)有資源是一個(gè)仿真模擬輸入引腳穩(wěn)定性的模擬SPICE文件。有了它,用戶就有了一款強(qiáng)大工具,使用戶能夠解決其中一個(gè)最關(guān)鍵、最棘手的轉(zhuǎn)換器問題。
2022-02-08
-
用于信號和數(shù)據(jù)處理電路的低噪聲、高電流、緊湊型DC-DC轉(zhuǎn)換器解決方案
現(xiàn)場可編程門陣列(FPGA)、片上系統(tǒng)(SoC)和微處理器等數(shù)據(jù)處理IC不斷擴(kuò)大在電信、網(wǎng)絡(luò)、工業(yè)、汽車、航空電子和國防系統(tǒng)領(lǐng)域的應(yīng)用。這些系統(tǒng)的一個(gè)共同點(diǎn)是處理能力不斷提高,導(dǎo)致原始功率需求相應(yīng)增加。設(shè)計(jì)人員很清楚高功率處理器的熱管理問題,但可能不會考慮電源的熱管理問題。與晶體管封裝處理器本身類似,當(dāng)?shù)蛢?nèi)核電壓需要高電流時(shí),熱問題在最差情況下不可避免——這是所有數(shù)據(jù)處理系統(tǒng)的總體電源趨勢。
2022-01-30
-
開發(fā)基于碳化硅的25 kW快速直流充電樁:方案概述
在本系列文章的第一部分中,[1]我們介紹了電動車快速充電器的主要系統(tǒng)要求,概述了這種充電器開發(fā)過程的關(guān)鍵級,并了解到安森美(onsemi)的應(yīng)用工程師團(tuán)隊(duì)正在開發(fā)所述的充電器?,F(xiàn)在,在第二部分中,我們將更深入研究設(shè)計(jì)的要點(diǎn),并介紹更多細(xì)節(jié)。特別是,我們將回顧可能的拓?fù)浣Y(jié)構(gòu),探討其優(yōu)點(diǎn)和權(quán)衡,并了解系統(tǒng)的骨干,包括一個(gè)半橋SiC MOSFET模塊。
2022-01-28
-
如何充分發(fā)揮碳化硅耐高溫的優(yōu)勢?
隨著碳化硅(SiC)技術(shù)的發(fā)展,器件也在日趨成熟和商業(yè)化,其材料獨(dú)特的耐高溫性能正在加速推動結(jié)溫從150℃走向175℃,有的公司稱,現(xiàn)在已開始研發(fā)200℃結(jié)溫的碳化硅器件。
2022-01-28
-
在當(dāng)今高壓半導(dǎo)體器件上執(zhí)行擊穿電壓和漏流測量
在經(jīng)過多年研究和設(shè)計(jì)之后,碳化硅(SiC)和氮化鎵 (GaN)功率器件正變得越來越實(shí)用。這些器件盡管性能很高,但它們也帶來了許多挑戰(zhàn),包括柵極驅(qū)動要求。SiC要求的柵極電壓(Vgs)要高得多,在負(fù)偏置電壓時(shí)會關(guān)閉。GaN的閾值電壓(Vth)則低得多,要求嚴(yán)格的柵極驅(qū)動設(shè)計(jì)。寬帶隙(WBG)器件由于物理特點(diǎn),機(jī)身二極管壓降較高,因此對空轉(zhuǎn)時(shí)間和打開/關(guān)閉跳變的控制要求要更嚴(yán)格。
2022-01-27
- 灣芯展2025預(yù)登記啟動!10月深圳共襄半導(dǎo)體盛宴
- 滌綸電容技術(shù)全解析:從聚酯薄膜特性到高保真應(yīng)用設(shè)計(jì)指南
- 安規(guī)電容技術(shù)全景圖:從安全設(shè)計(jì)到國產(chǎn)替代突圍
- EMVCo C8預(yù)認(rèn)證!意法半導(dǎo)體STPay-Topaz-2重塑支付芯片安全邊界
- 力芯微ET6416 vs TI TPS25946:系統(tǒng)級芯片設(shè)計(jì)的兩種路徑
- 從方波到矢量控制:BLDC電機(jī)驅(qū)動器的國產(chǎn)化進(jìn)階之路
- 集成化與智能化:國產(chǎn)有刷電機(jī)驅(qū)動芯片的技術(shù)躍遷與應(yīng)用突圍
- 艾邁斯歐司朗斬獲OPPO 2025“最佳交付獎(jiǎng)”:十年合作再攀供應(yīng)鏈新高度
- 意法半導(dǎo)體1600V IGBT新品發(fā)布:精準(zhǔn)適配大功率節(jié)能家電需求
- 全球工程師福音:貿(mào)澤電子TI產(chǎn)品庫4.5萬種可立即發(fā)貨
- 360采購幫發(fā)布“五大權(quán)益體系”,助力商家生意長效增長
- 工程師親述:國產(chǎn)BLDC驅(qū)動器替代的“踩坑”實(shí)錄與破局指南
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall